The Impact of Incorporating Phosphor Into Liquid Organic Fertilizer Media on The Production of Pigment and Protein in Spirulina sp.

Penulis

  • Wendy Almira Kintoko Department of Biology, Science and Technology Faculty, University of Al Azhar Indonesia South Jakarta, DKI Jakarta, Indonesia
  • Risa Swandari Wijihastuti Department of Biology, Science and Technology Faculty, University of Al Azhar Indonesia South Jakarta, DKI Jakarta, Indonesia
  • Nita Noriko Department of Biology, Science and Technology Faculty, University of Al Azhar Indonesia South Jakarta, DKI Jakarta, Indonesia

DOI:

https://doi.org/10.36722/exc.v1i0.2349

Abstrak

Spirulina sp., a type of blue-green microalgae, possesses various beneficial properties such as antioxidants, probiotics, proteins, pigments, and carbohydrates, enabling it to generate a wide range of useful products. Previous studies using commercial fertilizers as the growth medium, have not achieved optimal pigment and protein production. Therefore, this study aims to investigate the impact of combining liquid organic fertilizer derived from Canna indica waste with TSP (Triple Super Phosphate) fertilizer on changes in pigment and protein production in Spirulina sp. The study was conducted for 16 days using a completely randomized design, with four replicates for each of the six treatments, along with a control. The results demonstrated a prolonged logarithmic growth phase, with the highest dry biomass weight observed on the 16th day in the treatment 1A (1,585 gr/L). Treatment 1A exhibited the highest levels of allophycocyanin and phycoerythrin pigments (9,861 mg/L and 4,319 mg/L, respectively), while treatment 1C yielded the highest protein content (0.33%). Statistical analysis on day 12, with a 95% confidence level, revealed significant differences in pigment production between various treatment groups. The study suggests that a phosphor concentration of 20 ppm is optimal for cultivating Spirulina sp.

Referensi

Amanatin, D. & Nurhidayati, T., 2013. Pengaruh Kombinasi Konsentrasi Media Ekstrak Tauge (MET) dengan Pupuk Urea Terhadap Kadar Protein Spirulina sp. Jurnal Sains dan Seni Pomits, 2(2), pp. 182-185.

Soni, R., Sudhakar, K. & Rana, R., 2019. Comparative Study on The Growth Performance of Spirulina platensis on Modifying Culture Media. Energy Reports, Volume 5, pp. 327-336.

Soni, R. A., Sudhakar, K. & Rana, R. S., 2017. Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, Volume 69(A), pp. 157-171.

Kurniawati, R., Praharyawan, S. & Tri-Panji, 2020. Optimasi Nisbah Natrium Nitrat: Urea dan Konsentrasi Nitrogen Pada Kultivasi Spirulina platensis untuk Produksi Protein dan Pigmen Fikosianin. Menara Perkebunan, 88(2), pp. 130-140.

Tietze, H., 2004. Spirulina Micro Food Macro Blessing. 4 ed. Australia: Harald W. Tietze Publishing.

Goldman, J., 1979. Outdoor algal mass culture. II. Photosynthetic Yield Limitations. Water Research, 13(2), pp. 119-136.

Christmadha, T., Panggabean, L. & Mardiati, Y., 2006. Pengaruh Konsentrasi Nitrogen dan Fosfor Terhadap Pertumbuhan, Kandungan Protein, Karbohidrat dan Fikosianin Pada Kultur Spirulinafusiformis. Berita Biologi, 8(3), pp. 163-169.

Budiardi, T., Utomo, N. & Santosa, A., 2010. Pertumbuhan dan Kandungan Nutrisi Spirulina sp. pada Fotoperiode yang Berbeda. Jurnal Akuakultur Indonesia, 9(2), pp. 146-156.

Christwardana, M., Nur, A. & Hadiyanto, H., 2013. Spirulina platensis: Potensinya Sebagai Bahan Pangan Fungsional. Jurnal Aplikasi Teknologi Pangan, 2(1), pp. 1-4.

Nemerow, N. L., 1991. Stream, Lake, Estuary, and Ocean Pollution. 2nd ed. United States: s.n.

Salunkhe, D. K., Kadam, S. S. & Chavan, J. K., 1985. Postharvest Biotechnology of Food Legumes. 1st ed. Florida: CRC Press.

Suminto, 2009. Penggunaan Jenis Media Kultur Teknis Terhadap Produksi dan Kandungan Nutrisi Sel Spirulina platensis. Jurnal Saintek Perikanan, 4(2), pp. 53-61.

Putra, R., Mercuriani, I. & Semiarti, E., 2016. Pengaruh Cahaya dan Temperatur Terhadap Pertumbuhan Tunas dan Profil Protein Tanaman Anggrek Phalanopsis anabilis Transgenik Pembawa Gen Ubipro: PaFT. Bioeksperimen, 2(2), pp. 79-90.

Bui, F., Lelang, M. & Taolin, R., 2015. Pengaruh Komposisi Media Tanam dan Ukuran Polybag Terhadap Pertumbuhan dan Hasil Tomat (Licopercicum escelentum, Mill). Jurnal Pertanian Konservasi Lahan Kering, 1(1), pp. 1-7.

Becker, W. et al., 1994. Microalgae, Biotechnology, and Microbiology. New York: Cambridge University Press.

Natalia, Amin, B. & Effendi, I., 2019. Effect of Addition of Different Nitrate Concentration on Spirulina platensis Biomass with Semi Outdoor System. Asian Journal of Aquatic Sciences, Volume 2, pp. 127-131.

Nainggolan, J. G. M., Tanjung, A. & Effendi, I., 2018. Growth of Spirulina platensis in Indoor and Semi Outdoor Culturing Systems. Asian Journal of Aquatic Sciences, 1(1), pp. 22-28.

Isnansetyo, A. & Kurniastuty, 1995. Teknik Kultur Phytoplankton Zooplankton, Pakan Alam untuk Pembenihan Organisme Laut. Yogyakarta: Kanisius.

Madigan, M. T., Martinko, J. M., Stahl, D. A. & Clark, D. P., 2011. Brock Biology of Microorganisms. 13th ed. San Francisco: Pearson Education Inc.

Ulya, S., Sedjati, S. & Yudiati, E., 2018. Kandungan Protein Spirulina platensis pada Media Kultur dengan Konsentrasi Nitrat (KNO3) yang Berbeda. Buletin Oseanografi Marina, 7(2), pp. 98-102.

Sari, F. Y. A., Suryajaya, I. M. A. & Hadiyanto, 2012. Kultivasi Mikroalga Spirulina platensis dalam Media Pome dengan Variasi Konsentrasi Pome dan Komposisi Jumlah Nutrien. Jurnal Teknologi Kimia dan Industri, 1(1), pp. 487-494.

Tambunan, A. L., Yuniar, I. & Trisyani, N., 2022. Kultur Pertumbuhan Mikroalga Spirulina sp. pada Media Asam, Netral, dan Alkaline Skala Laboratorium. Jurnal Perikanan dan Ilmu kelautan, 4(1), pp. 28-37.

Tinambunan, J., Wijayanti, M. & Jubaedah, D., 2017. Pertumbuhan Populasi Spirulina platensis dalam Media Limbah Cair Bahan Olahan Kecap dan Media Zarrouk. Jurnal Akuakultur Rawa Indonesia, 5(2), pp. 209-219.

Oktafiani, M. & Joni, H., 2013. Pengaruh Konsentrasi Nutrien dan Konsentrasi Bakteri pada Produksi Alga dalam Sistem Bioreaktor Proses Batch. Jurnal Teknik POMITS, 2(2), pp. 57-62.

Andersen, R. A., 2005. Algal Culturing Techniques. 1st ed. UK: Elsevier Academic Press.

Richmond, A., 2004. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. 1st ed. Australia: Blackwell Science Ltd.

Hu, Q., 2004. Environmental Effects on Cell Composition. In: In: Richmond A (ed.). Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Australia: Blackwell Science Ltd, pp. 114-122

Wahidin, S., Idris, A. & Shaleh, S. R. M., 2013. The Influence of Light Intensity and Photoperiod on The Growth and Lipid Content of Microalgae Nannochloropsis sp. Bioresource Technology, Volume 129, pp. 7-11.

Wijihastuti, R., Luthfiyah, A. & Noriko, N., 2020. Pengaruh Pertumbuhan Spirulina sp. Terhadap Penggunaan Pupuk Organik Cair Sebagai Media Tumbuh. Jurnal Al Azhar Indonesia Seri Sains dan Teknologi, 5(4), pp. 202-207.

Widawati, D., Santosa, G. W. & Yudiati, E., 2022. Pengaruh Pertumbuhan Spirulina platensis Terhadap Kandungan Pigmen Beda Salinitas. Journal of Marine Research, 11(1), pp. 61-70.

Manirafasha, E. et al., 2016. Phycobiliprotein: Potential Microalgae Derived Pharmaceutical and Biological Reagent. Biochemical Engineering Journal, Volume 109, pp. 282-296.

Fretes, H., Susanto, A., Prasetyo, B. & Limantara, L., 2012. Karotenoid dari Makroalgae dan Mikroalgae: Potensi Kesehatan Aplikasi dan Bioteknologi. Jurnal Teknologi dan Industri Pangan, 23(2), pp. 221-228.

Aryono, B., Zainuddin, M. & Fithria, R. F., 2022. Pertumbuhan, Kadar Pigmen dan Aktivitas Antioksidan Spirulina platensis pada Kultur dengan Perbedaan Warna Pencahayaan Leds. Journal of Marine Research, 11(4), pp. 805-818.

Amir, M., Agustini, W. & Caesar, Q., 2013. Analisis Protein, Karbohidrat, Lemak, dan Pigmen Fikobiliprotein Mikroalga Spirulina platensis yang Dikultivasi pada

Purba, N. E., Suhendra, L. & Wartini, N. M., 2019. Pengaruh Suhu dan Lama Ekstraksi dengan cara Maserasi terhadap Karakteristik Pewarna dari Ekstrak Alga Merah (Gracilaria sp.).

Sakka, A. et al., 1999. Nitrate, Phosphate, and Iron Limitation of The Phytoplankton Assemblage in The Lagoon of Takapoto Atoll (Tuamotu Archipelago, Frnch Polynesia). Aquatic Microbial Ecology, Volume 19, pp. 149-161.

Prayitno, J., 2016. Pola Pertumbuhan dan Pemanenan Biomassa dalam Fotobioreaktor Mikroalga untuk Penangkapan Karbon. Jurnal Teknologi Lingkungan, 17(1), pp. 45-52.

Diterbitkan

2023-12-31

Terbitan

Bagian

Articles